EVALUATION SCHEME

OF

B. TECH

OF

III YEAR

B. TECH. (CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABUS AND EVALUATION SCHEME

Branch: B. Tech Civil Engineering Program

(w.e.f. 2022-23)

Year – III, Semester – V

		Code No	Name of Subject	Periods				Evaluation Scheme					Attributes							United
S. No.	Course Category			L	Т	P	С	Continuous Assessment (CA)			Exam	Subject Total	Employ	Entrepr eneurshi	Skill Develo	Gende r	Enviro nment &	Huma n	Professi onal	Nations Sustainable Developme nt Goals
								UE	TA	Total	ESE		ability	р	pment	Equalit y	Sustai nabilit y	Value	Ethics	(SDGs)
1	DC	CE301	Structural Analysis-II	3	1	0	4	40	20	60	40	100								
2	DC	CE302	Design of Reinforced Concrete Structure-I	3	1	0	4	40	20	60	40	100	٧	٧						9
3	DC	CE303	Transportation Engineering	3	1	0	4	40	20	60	40	100	٧	٧	٧		٧		٧	9
4	DC	CE304	Geotechnical Engineering-I	3	1	0	4	40	20	60	40	100	٧	٧	٧		٧		٧	9
5	DC	CE306	Water Resources Engineering	3	1	0	4	40	20	60	40	100	٧	٧			٧		٧	6
6	DC	CE318	Estimating & Costing	3	1	0	4	40	20	60	40	100								
PRACTICAL / DRAWING / DESIGN																				
7	DC	CE307	Structural Analysis Lab	0	0	2	1	40	20	60	40	100	٧		٧					
8	DC	CE308	Transportation Engineering Lab	0	0	2	1	40	20	60	40	100	٧	٧	٧				٧	11
9	DC	CE328	Geotechnical Engineering Lab	0	0	2	1	40	20	60	40	100	٧	٧	٧				٧	
Total 18 6 6 27												900								

L – Lecture; T – Tutorial; P – Practical; C – Credits; UE – Unit Exams; TA – Teacher Assessment

Continuous Assessment (CA) = Unit Exams + Teacher Assessment

Subject Total = Continuous Assessment (CA) + End Semester Examination (ESE)

BS – Basic Sciences **DC** – Departmental Core **HM** – Humanities **OE** – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

SYLLABUS AND EVALUATION SCHEME

Branch: B. Tech Civil Engineering Program

(w.e.f. 2022-23)

Year – III, Semester – VI

	Course Category	Code No	Name of Subject	Periods				Evaluation Scheme					Attributes						United	
S. No.				L	Т	P	С	Continuous Assessment (CA)		Exam	Subject Total	Employ	Entrepr eneurshi	Skill Develo	Gende r	Enviro nment &	Huma n	Professi onal	Nations Sustainabl e Developm	
								UE	TA	Total	ESE	ability	р	pment	Equalit y	Sustai nabilit v	Value	Ethics	ent Goals (SDGs)	
1	DC	CE310	Environmental Engineering-I	3	1	0	4	40	20	60	40	100	√	√	√		V		√	6
2	DC	CE311	Design of Reinforced Concrete Structure-II	3	1	0	4	40	20	60	40	100	√	√	√		V		V	9
3	DC	CE312	Geotechnical Engineering-II	3	1	0	4	40	20	60	40	100	√	√	$\sqrt{}$				\checkmark	9
	DE	CE313	Traffic Engineering				4	40			40	100	\checkmark	٧	٧				٧	
		CE314	Open Channel Flow	3	1	0							√				٧			
4		CE315	Matrix Methods of Structural Analysis						20	60			√		٧					
		CE316	Sustainable Construction Techniques										√	٧	٧		٧	٧	٧	
		CE317	Ground Improvement Techniques										٧	٧	٧		٧			
	DE	CE320	Dock Harbor Tunnel Engineering	3								100	√				٧			
		CE321	Design of Hydraulic Structures		1	0	4	40			40		√	٧	٧	٧	٧	٧	٧	
5		CE322	Maintenance & Rehabilitation of Structures						20	60			√		٧		٧			
		CE323	Occupational Health and Safety Engineering										√	٧	٧	٧	٧	٧	٧	
		CE324	Principles of Town Planning and Architecture										√	٧	٧				٧	
6	OE	-	Open Elective	3	1	0	4	40	20	60	40	100								
PRACTICAL / DRAWING / DESIGN																				
7	DC	CE326	Engineering Geology Lab	0	0	2	1	40	20	60	40	100								
8	DC	CE327	Environmental Engineering Lab–I	0	0	2	1	40	20	60	40	100	٧	٧	٧		٧		٧	14
9	DC	CE329	Survey Camp	0	0	0	1	0	0	100	0	100	٧	٧	٧				٧	
10	DC	CE352	Comprehensive Annual Assessment-II	-	-	-	1	-	-	100	-	100								
Total 18 6						4	28					1000								

L – Lecture; T – Tutorial; P – Practical; C – Credits; UE – Unit Exams; TA – Teacher Assessment Continuous Assessment (CA) = Unit Exams + Teacher Assessment

Subject Total = Continuous Assessment (CA) + End Semester Examination (ESE)

BS – Basic Sciences **DC** – Departmental Core **HM** – Humanities **OE** – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

Departmental	Elective - I	Departmental Elective - II					
CE313	Traffic Engineering	CE320	Dock Harbor Tunnel Engineering				
CE314	Open Channel Flow	CE321	Design of Hydraulic Structures				
CE315	Matrix Methods of Structural Analysis	CE322	Maintenance & Rehabilitation of Structures				
CE316	Sustainable Construction Techniques	CE323	Occupational Health and Safety Engineering				
CE317	Ground Improvement Techniques	CE324	Principles of Town Planning and Architecture				

INTEGRAL UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

PROGRAMME: B.TECH

PROGRAM SPECIFIC OUTCOMES (PSO):

- **PSO-1:** Developing employability skills among students so that they are capable of qualifying State and National level competitive examinations in government/semi-government/private sectors.
- **PSO-2:** Developing Analytical and Design Skills among students in order to make them capable to peruse higher studies as well as have a career as an entrepreneur.

PROGRAM EDUCATIONAL OBJECTIVES (PEO):

- **PEO-1:** Enabling the application of basic and engineering science principles in analysis, design and execution of civil engineering works.
- **PEO-2:** Planning suitable infrastructure as per environmental and societal needs for sustainable development.
- **PEO-3:** Promoting lifelong learning to meet the dynamic professional demands by developing ethical, IT, inter personal and team skills.

PROGRAM OUTCOMES (PO):

- PO1- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3- Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4- Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5- Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- PO6- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7- Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8-** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9-** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10-** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11- Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.